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1 Introduction

Vector variational inequality was first introduced and studied by Giannessi [5] in
the setting of finite-dimensional Euclidean spaces. Since then, existence results and
duality for vector variational inequalities and vector complementarity problems have
been studied by many authors (see, for e.g., [2,6,7,10] and the references therein).

Chen and Yang [3] discussed equivalence relations among a vector complemen-
tarity problem, a vector variational inequality problem, a vector extremum problem,
a weak minimal element problem, and a vector unilateral minimization problem in
Banach spaces. We refer to [1,4,8,9,11,14] for some related works.

Recently, Rubinov and Gasimov [13] considered a vector optimization problem
with preferences that are not necessarily a pre-order relation. They studied a class
of preferences that are defined by means of so-called strongly star-shaped conic sets
in a Banach space X. The simplest example of a strongly star-shaped conic set is the
union of a finite number of convex and closed cones with the intersection having a
nonempty interior. Such a relation, determined by a nonconvex cone, is not transitive.
Thus, there might be some difficulties to study corresponding vector optimization
problems. However, Rubinov and Gasimov [13] suggested certain classes of functions
that provide scalarization of the relations. Using this class they constructed scalar
optimization problems such that weakly minimal points, minimal points and proper
minimal points can be completely described as solutions of these problems.

This paper aims to understand the solution structure for vector optimization prob-
lems where the ordering cone is not convex. These results may be useful in the design
of optimal algorithms to find the whole solution set of vector optimization problems
with a nonconvex ordering cone. We introduce vector complementarity problems,
vector variational inequalities, and vector optimization problems where relations are
determined by a nonconvex cone in Banach spaces. We give some characterization
results of solution sets for vector complementarity problems and vector variational
inequalities. More specifically, when the nonconvex ordering cone is defined as the
union of a set of closed and convex cones, the solution sets of the above problems
can be represented in terms of the intersection or union of the solution sets of the
corresponding subproblems defined by each closed and convex cone. Some simple
examples are given to illustrate these relationships.

We also give some relations of vector complementarity problems, vector variational
inequalities, and minimal element problems.

2 Vector optimization problems

In this section, we give some results concerned with relations of solution sets for (mild)
strong vector complementarity problems, (mild) strong vector variational inequalities,
and (mild) strong vector optimization problems.

Let X be a Banach space with a dual space X∗ and A be a subset of X. The topo-
logical interior of a subset A in X is denoted by intA. A nonempty subset C in X is
called a cone if λC ⊂ C for any λ > 0. A cone C is called a convex cone if C + C = C.
A subset C is called a pointed cone if C is a cone and C ∩ (−C) = {0}.

Let (X, C) be an ordered Banach space with C being convex and intC �= ∅.
Let P be a cone of a Banach space Y and let C(P) denote the complement of P.

Since P is a cone, we know that C(P) is also a cone.
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Let P be a cone of a Banach space Y. We define the following ordering relation:
for any y1, y2 ∈ Y,

y1 ≥P y2 if and only if y1 − y2 ∈ P.

Note that the ordering ≥P may not be transitive. In sequel, P may be one of the
following: P itself, C(intP) and C(P\{0}).

Let Y be a Banach space and P be a closed and pointed cone in Y with intP �= ∅. Let
L(X, Y) be the space of all continuous linear maps from X to Y and T : X →L(X, Y).
We denote the value of l ∈ L(X, Y) at x ∈ X by (l, x). Consider the following problems:

Strong Vector Complementarity Problem (SVCP): find x ∈ C such that

(Tx, x) = 0, (Tx, y) ≥P 0, ∀y ∈ C;

Mild Vector Complementarity Problem (MVCP): find x ∈ C such that

(Tx, x) = 0, (Tx, y) ≤C(P\{0}) 0, ∀y ∈ C;

Positive Vector Complementarity Problem (PVCP): find x ∈ C such that

(Tx, x) ≥C(intP) 0, (Tx, y) ≥P 0, ∀y ∈ C;

Strong Vector Variational Inequality (SVVI): find x ∈ C such that

(Tx, y − x) ≥P 0, ∀y ∈ C;

Mild Vector Variational Inequality (MVVI): find x ∈ C such that

(Tx, y − x) ≤C(P\{0}) 0, ∀y ∈ C;

and
Strong Minty Vector Variational Inequality (SMVVI): find x ∈ C such that

(Ty, y − x) ≥P 0, ∀y ∈ C.

We would like to point out that the most of the above problems have been intro-
duced and studied by several authors when the cone P is convex (see, e.g., [2,3,6,7,9]).

2.1 P is a general nonconvex cone

We need the following notions.

Definition 2.1 A mapping T : X →L(X, Y) is said to be pseudomonotone with respect
to P if, for any x, y ∈ X,

(Tx, y − x) ≥P 0 �⇒ (Ty, y − x) ≥P 0.

Example 2.1 Let X = R, C = [0, +∞), Y = R2 and

P =
{
(x, y) : x ≥ 0, 0 ≤ y ≤ x

2

}
∪

{
(x, y) : y ≥ 0, 0 ≤ x ≤ y

2

}
.

Then P is a nonconvex cone. Let T :X →L(X, Y) be defined as follows:

(Tx, z) = (x2 + 1)(2z, z), ∀x, z ∈ X.

Then it is easy to verify that T is pseudomonotone.
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Example 2.2 Let X = Y = Lp(S, �, µ) and A ∈ L(Lp, Lp), where (S, �, µ) is a
measure space, p ≥ 1, and Lp(S, �, µ) is the class of all measurable functions f
such that |f |p is µ-integrable. For x ∈ Lp define e(x) = {s ∈ S : (Ax)(s) < 0}.
Let P = {x ∈ Lp : µ(e(x)) > 0}. Then it is easy to check that P is a cone. Let
T: Lp → L(Lp, Lp) be defined by

(Tx, y)(s) =
{

(Ay)(s), if s ∈ e(x),

0, if s /∈ e(x).

Then

(Tx, y − x)(s) =
{

A(y − x)(s), if s ∈ e(x),

0, if s /∈ e(x)

and

e(Tx, y − x) = {s ∈ S : (Tx, y − x) < 0}
= {s ∈ S : (Ax)(s) < 0, A(y − x)(s) < 0}.

Now we check that e(Ty, y − x) ⊃ e(Tx, y − x). Indeed, letting s ∈ e(Tx, y − x), then
(Ax)(s) < 0, (Ay)(s) − (Ax)(s) < 0. It follows that (Ay)(s) < (Ax)(s) < 0 and so

s ∈ e(Ty, y − x) = {s ∈ S : (Ay)(s) < 0, (Ay)(s) < (Ax)(s)}.
Thus, if (Tx, y − x) ∈ P then µ(e(Tx, y − x)) > 0, so µ(e(Ty, y − x)) > 0. This implies
that the mapping T is pseudomonotone.

Definition 2.2 A mapping T : X → L(X, Y) is said to be hemicontinuous if, for any
given x, y ∈ X, the mapping t �→ (T(x + t(y − x)), y − x) is continuous at 0+.

Let SP
SVCP, SP

SMVVI, SP
SVVI, SP

MVCP, and SP
MVVI denote the solution sets of (SVCP),

(SMVVI), (SVVI), (MVCP), and (MVVI), respectively.

Theorem 2.1 For any T: X → L(X, Y), we have the following results:

(1) SP
SVVI = SP

SVCP;
(2) If T is hemicontinuous and pseudomonotone, then SP

SMVVI = SP
SVVI.

Proof (1) Letting x ∈ SP
SVCP, then x ∈ C and

(Tx, x) = 0, (Tx, y) ≥P 0, ∀y ∈ C.

Thus, for any y ∈ C,

(Tx, y − x) = (Tx, y) − (Tx, x)

= (Tx, y) − 0

≥ P0

and so x ∈ SP
SVVI. Conversely, suppose that x ∈ SP

SVVI. Then

(Tx, y − x) ≥P 0, ∀y ∈ C.

Since C is a cone, putting y = 2x and y = 0 in the above inequality, we have

(Tx, x) ≥P 0, −(Tx, x) ≥P 0
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and so

(Tx, x) ∈ P ∩ (−P).

Since P ∩ (−P) = {0}, we know that (Tx, x) = 0. Furthermore, for any y ∈ C,

(Tx, y) = (Tx, y − x) + (Tx, x) ≥P 0.

It follows that x ∈ SP
SVCP and so SP

SVVI = SP
SVCP.

(2) Suppose that x ∈ SP
SVVI. Then

(Tx, y − x) ≥P 0, ∀y ∈ C.

Since T is pseudomonotone,

(Ty, y − x) ≥P 0, ∀y ∈ C

and so x ∈ SP
SMVVI. Conversely, letting x ∈ SP

SMVVI, we have

(Ty, y − x) ≥P 0, ∀y ∈ C.

For any y ∈ C, let z = ty+(1−t)x. Then z ∈ C for t ∈ (0, 1). Substituting z = ty+(1−t)x
into the above inequality, we have

t(T(x + t(y − x)), y − x) ≥P 0, ∀y ∈ C.

Since P is a cone, it follows that

(T(x + t(y − x)), y − x) ≥P 0, ∀y ∈ C.

The hemicontinuity of T implies that

(Tx, y − x) ≥P 0, ∀y ∈ C

and so x ∈ SP
SVVI. This completes the proof. ��

It follows from Theorem 2.1 (1) that the following result holds.

Theorem 2.2 For any T: X → L(X, Y), we have SP
MVCP ⊂ SP

MVVI.

Let A be a nonempty subset of Y. a ∈ A is said to be a strongly (or an ideal)
minimal point of the set A with respect to P if a ≤P y for all y ∈ A. a ∈ A is said to be
a mildly minimal point of the set A with respect to P if y ≤C(P\{0}) a for all y ∈ A. We
denote by MinPA and MinC(P\{0})A the set of all strongly minimal points of A and the
set of all mildly minimal points of A, respectively.

Let T: X → L(X, Y) be a mapping. Define the feasible sets Fs and Fm associated
with T by

Fs = {x ∈ X : x ∈ C, (Tx, y) ≥P 0, ∀y ∈ C}
and

Fm = {x ∈ X : x ∈ C, (Tx, y) ≤C(P\{0}) 0, ∀y ∈ C},
respectively.

Let f (x) = (Tx, x) for all x ∈ C. We now consider the following problems:
Strong Vector Optimization Problem (SVOP):

MinPf (x) subject to x ∈ Fs
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and
Mild Vector Optimization Problem (MVOP):

MinC(P\{0})f (x) subject to x ∈ Fm.

A point x is called a strongly minimal solution of SVOP (resp., a mildly mini-
mal solution of MVOP) if f (x) is a strongly minimal point of SVOP (resp., a mildly
minimal point of MVOP), i.e., f (x) ∈ MinPf (Fs) (resp., f (x) ∈ MinC(P\{0})f (Fm)).
We denote the set of all strongly minimal solutions of SVOP (resp., mildly minimal
solutions of MVOP) by Es (resp., Em) and the set of all strongly minimal points of
SVOP(resp., mildly minimal points of MVOP) by Hs(resp., Hm). Then f (Es) = Hs
(resp., f (Em) = Hm).

Theorem 2.3 Suppose that f (Es) �= ∅. Then the following conclusions hold:

(1) if there exists x ∈ Es such that f (x) = 0, then the SVCP is solvable;
(2) if there exists x ∈ Es such that f (x) ≥C(intP) 0, then the PVCP is solvable.

Proof It is easy to see that (1) is true. Now we prove that (2) holds. Let x ∈ Es and
f (x) ≥C(intP) 0. Then x ∈ C and

(Tx, x) = f (x) ≥C(intP) 0, (Tx, y) ≥P 0, ∀y ∈ C.

It follows that x is a solution of PVCP. This completes the proof.
Similarly, we have the following result. ��
Theorem 2.4 Suppose that f (Em) �= ∅. If there exists x ∈ Em such that f (x) = 0, then
the mild strong vector complementarity problem (MVCP) is solvable.

We now consider the following problems:
The SVOPl: for a given l ∈ L(X, Y), finding x ∈ Fs such that l(x) ∈ MinPl(Fs);
The strongly minimal element problem (SMEP): finding x ∈ Fs such that x ∈

MinCFs;
The strong vector unilateral optimization problem (SVUOP): finding x ∈ C such

that f (x) ∈ MinPf (C);
The MVOPl: for a given l ∈ L(X, Y), finding x ∈ Fm such that l(x) ∈ MinC(P\{0})

l(Fm);
The mild minimal element problem (MMEP): finding x ∈ Fm such that x ∈

MinC(P\{0})Fm.
Let X and Y be two Banach spaces. A map f : X → Y is Frechet differentiable at

x0 ∈ X if there exists a linear bounded operator Df (x0) such that

lim
x→0

‖f (x0 + x) − f (x0) − (Df (x0), x)‖/‖x‖ = 0.

In this case, Df (x0) is said to be the Frechet derivative of f at x0. The map f is said to
be Frechet differentiable on X if f is Frechet differentiable at each point of X.

Theorem 2.5 Let T = Df be the Frechet derivative of an operator f : X → Y. Then x
solves (SVUOP) implies that x solves (SVVI).

Proof Let x be a solution of (SVUOP). Then x ∈ C and f (x) ∈ MinPf (C), i.e.,
f (x) ≤P f (y) for all y ∈ C. Since, C is a convex cone,

f (x) ≤P f (x + t(w − x)), 0 < t < 1, w ∈ C.
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It follows that

1
t
[f (x + t(w − x)) − f (x)] ≥P 0.

Since f is Frechet differentiable on X and P is closed, letting t → 0+, we get

(Df (x), w − x) ≥P 0, ∀w ∈ C,

which is (SVVI). This completes the proof. ��
Definition 2.3 A linear operator l:X →Y is called positive with respect to C and P if,
for any x, y ∈ X,

x ≥C y �⇒ l(x) ≥P l(y).

Example 2.3 Let X = R = (−∞, ∞), C = [0, +∞), Y = R2 and

P =
{
(x, y) : x ≥ 0, 0 ≤ y ≤ x

2

}
∪

{
(x, y) : y ≥ 0, 0 ≤ x ≤ y

2

}
.

Then P is a nonconvex cone. Let l :X →Y be defined as follows:

l(x) =
(

x,
x
4

)
, ∀x ∈ X.

Then it is easy to verify that l is positive with respect to C and P.

Theorem 2.6 Let l be a linear operator such that l is positive with respect to C and P.
Then x solves (SMEP) implies that x solves (SVOP)l.

Proof Let x be a solution of SMEP. Then x ∈ Fs and x ≤C y for all y ∈ Fs, where

Fs = {x ∈ X : x ∈ C, (Tx, y) ≥P 0, ∀y ∈ C}.
For any z ∈ Fs, we know that x ≤C z. Since l is a positive linear operator, it follows
that l(x) ≤P l(z) and so

l(x) ∈ MinPl(Fs),

which is (SVOP)l. This completes the proof. ��
Similarly, we have the following result.

Theorem 2.7 Let l be a linear operator. If l is positive with respect to C(C\{0}) and
C(P\{0}), then x solves (MMEP) implies that x solves (MVOP)l.

2.2 P is a union of convex cones

We now consider the special case of P, that is, P is the union of convex cones.
Suppose that P = ∪i∈IPi, where I is an index set and Pi is convex, closed, and

pointed cones. Then it is clear that P may be not convex. We now give some examples
of nonconvex cones as follows.

Example 2.4 Let C(Q) denote the space of all continuous functions on Q, where Q is
compact. Let E ⊂ Q be closed and

P =
{

x ∈ C(Q) : max
t∈E

x(t) ≥ 0
}

.
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Then P = ⋃
t∈E Pt, where Pt = {x ∈ C(Q) : x(t) ≥ 0} is the half-space and thus a

convex cone, so P is the union of convex cones. It is easy to check that P is a nonconvex
cone.

Example 2.5 Let Q, C(Q), and E be the same as in Example 2.4. Let

P′ =
{

x ∈ C(Q) : x(t) ≤ 0, ∀t ∈ Q and max
t∈E

x(t) = 0
}

.

Then P′ = ⋃
T∈E P′

τ , where

P′
τ = {x ∈ C(Q) : x(t) ≤ 0, ∀t ∈ Q and x(τ ) = 0}.

It is easy to see that P′ is a nonconvex cone.

Proposition 2.1 Let T : X → L(X, Y). Suppose that P = ⋃
i∈I Pi, where Pi is a convex

cone in Y for i ∈ I. If T is pseudomonotone with respect to each Pi, i ∈ I, then T is
pseudomonotone with respect to P.

Proof Suppose that (Tx, y − x) ≥P 0. Since P = ⋃
i∈I Pi, there exists i ∈ I such that

(Tx, y−x) ≥Pi 0. Since T is pseudomonotone with respect to each Pi, (Ty, y−x) ≥Pi 0.
Since P = ⋃

i∈I Pi, we have (Ty, y − x) ≥P 0. Therefore, T is pseudomonotone with
respect to P. This completes the proof. ��
Theorem 2.8 Let T: X → L(X, Y) and P = ⋃

i∈I Pi, where Pi is a closed, pointed, and
convex cone in Y for i ∈ I. Then

(1) SP
SVCP ⊃ ⋃

i∈I SPi
SVCP, where SPi

SVCP (i ∈ I) denotes the solution set of the following
strong vector complementarity problem: find x ∈ C such that

(Tx, x) = 0, (Tx, y) ≥Pi 0, ∀y ∈ C;

(2) SP
PVCP ⊂ ⋂

i∈I SPi
PVCP, where SPi

PVCP (i ∈ I) denotes the solution set of the following
positive vector complementarity problem: find x ∈ C such that

(Tx, x) ≥C(intPi) 0, (Tx, y) ≥P 0, ∀y ∈ C;

(3) SP
MVCP = ⋂

i∈I SPi
MVCP, where SPi

MVCP (i ∈ I) denotes the solution set of the follow-
ing mild vector complementarity problem: find x ∈ C such that

(Tx, x) = 0, (Tx, y) ≤C(Pi\{0}) 0, ∀y ∈ C.

Proof (1) Let x ∈ ∪i∈ISPi
SVCP. Then there exists i ∈ I such that x ∈ SPi

SVCP. Thus, x ∈ C,
(Tx, x) = 0, and

(Tx, y) ≥Pi 0, ∀y ∈ C.

This implies that (Tx, y) ∈ Pi for all y ∈ C and so (Tx, y) ∈ P for all y ∈ C. It follows
that x ∈ SP

SVCP.
(2) Suppose that x ∈ SP

PVCP. Then x ∈ C and

(Tx, x) ≥C(intP) 0, (Tx, y) ≥P 0, ∀y ∈ C.

This implies that (Tx, x) ∈ C(intP) and (Tx, y) ∈ P for all y ∈ C. Since P = ∪i∈IPi, we
know that ⋃

i∈I

intPi ⊂ intP.
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It follows that (Tx, x) ∈ C(intPi) for all i ∈ I. Thus, x ∈ ∩i∈ISPi
PVCP.

(3) Let x ∈ SP
MVCP. Then x ∈ C,

(Tx, x) = 0, (Tx, y) ≤C(P\{0}) 0, ∀y ∈ C

and so −(Tx, y) ∈ C(P\{0}) for all y ∈ C. Since P = ∪i∈IPi, it follows that −(Tx, y) ∈
C(Pi\{0}) for all y ∈ C and i ∈ I. Thus, x ∈ SPi

MVCP and so x ∈ ∩i∈ISPi
MVCP. Conversely,

suppose that x ∈ ∩i∈ISPi
MVCP. Then (Tx, x) = 0 and

(Tx, y) ≤C(Pi\{0}) 0, ∀y ∈ C, i ∈ I.

This implies that −(Tx, y) ∈ C(Pi\{0}) for all y ∈ C and i ∈ I, and so −(Tx, y) ∈
C(P\{0}) for all y ∈ C. It follows that x ∈ SP

MVCP. This completes the proof. ��

Example 2.6 Let X = Y = R2, C = [0, +∞) × [0, +∞), and P = P1 ∪ P2, where

P1 =
{
(x, y) : x ≥ 0, 0 ≤ y ≤ x

2

}
, P2 =

{
(x, y) : y ≥ 0, 0 ≤ x ≤ y

2

}
.

Let T: X → L(X, Y) be defined by

Tx =
(

x1 0
0 x2

)
, ∀x = (x1, x2) ∈ X.

Then it is easy to see that SP
SVCP = {(0, 0)}. In fact, for each x∗ ∈ C, (T(x∗), x∗) = 0

implies that x∗ = (0, 0) and

(Tx∗, y) =
(

0
0

)
≥P 0, ∀y = (y1, y2) ∈ C.

Similarly, we have SPi
SVCP = {(0, 0)} for i = 1, 2. Thus, SP

SVCP = SP1
SVCP

⋃
SP2

SVCP.

Example 2.7 Let X, Y, C, P, P1 and P2 be the same as in Example 2.6. Let T: X →
L(X, Y) be defined by

Tx =
(

0 2
0 x2

)
, ∀x = (x1, x2) ∈ X.

Then

(Tx, x) =
(

0 2
0 x2

) (
x1
x2

)
=

(
2x2
x2

2

)
, ∀x = (x1, x2) ∈ C.

It is easy to check that

SP
PVCP = [0, +∞) × {0} ∪ [0, +∞) × {1} ∪ [0, +∞) × {4}.

Similarly, we have

SP1
PVCP = [0, +∞) × {0} ∪ [0, +∞) × {1} ∪ [0, +∞) × [4, +∞)

and

SP2
PVCP = [0, +∞) × [0, 1] ∪ [0, +∞) × {4}.

Thus, SP
PVCP = SP1

PVCP ∩ SP2
PVCP.
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Example 2.8 Let X, Y, C, P, P1, P2 and T be the same as in Example 2.6. Then
it is easy to see that SP

MVCP = {(0, 0)} and SPi
MVCP = {(0, 0)} for i = 1, 2. Thus,

SP
MVCP = SP1

MVCP ∩ SP2
MVCP.

Similarly, we have the following results.

Theorem 2.9 Let T: X →L(X, Y) and P = ⋃
i∈I Pi, where Pi is a closed, pointed, and

convex cone in Y for i ∈ I. Then

SP
SVVI ⊃

⋃
i∈I

SPi
SVVI, SP

SMVVI ⊃
⋃
i∈I

SPi
SMVVI, SP

MVVI =
⋂
i∈I

SPi
MVVI,

where SPi
SVVI, SPi

SMVVI, and SPi
MVVI are respectively the solution sets of the following

problems: find x ∈ C such that

(Tx, y − x) ≥Pi 0, ∀y ∈ C,

(Ty, y − x) ≥Pi 0, ∀y ∈ C

and

(Tx, y − x) ≤C(Pi\{0}) 0, ∀y ∈ C.

We now consider the minimal element problem.

Theorem 2.10 Suppose that P = ⋃
i∈I Pi, where Pi is a closed, pointed, and convex

cone in Y for i ∈ I. Then, for any subset A ⊂ Y,

MinPA =
⋃
i∈I

MinPi A, MinC(P\{0})A =
⋃
i∈I

MinC(Pi\{0})A.

Proof It is easy to see that

x ∈ MinPA ⇐⇒ x ≤P y, ∀y ∈ A

⇐⇒ ∃ i ∈ I such that x ≤Pi y, ∀y ∈ A

⇐⇒ x ∈
⋃
i∈I

MinPi A.

Thus,

MinPA =
⋃
i∈I

MinPi A.

The second equality follows from the first equality directly. This completes that proof.
��

3 Weak vector optimization problems

In this section, we give some results concerned with relations of solution sets for weak
vector complementarity problems, weak vector variational inequalities, and weak
vector optimization problems.

Let (X, C) be an ordered Banach space with intC �= ∅, Y be a Banach space, P be
a closed and pointed cone in Y with intP �= ∅, and T : X →L(X, Y). We consider the
Weak Vector Complementarity Problem (WVCP): finding x ∈ C, such that

(Tx, x) ≥C(intP) 0, (Tx, y) ≤C(intP) 0, ∀y ∈ C.
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We also consider the Weak Vector Variational Inequality (WVVI): finding x ∈ C,
such that

(Tx, y − x) ≤C(intP) 0, ∀y ∈ C.

We denote by SP
WVCP and SP

WVVI the solution sets of WVCP and WVVI, respec-
tively.

Let A be a nonempty subset of Y. We say that a ∈ A is a weakly minimal point of
the set A with respect to P if y ≤C(intP) a for all y ∈ A. The set of all weakly minimal
points of A is denoted by MinC(intP)A.

Let T : X → L(X, Y) be a mapping. Define the feasible set associated with T as
follows:

Fw = {x ∈ X : x ∈ C, (Tx, y) ≤C(intP) 0, ∀y ∈ C}.
Let f (x) = (Tx, x) for all x ∈ C. We now consider the Weak Vector Optimization
Problem (WVOP):

MinC(intP)f (x) subject to x ∈ Fw.

A point x is called a weakly minimal solution of WVOP if f (x) is a weakly minimal
point of WVOP, i.e., f (x) ∈ MinC(intP)f (Fw). We denote the set of all weakly minimal
solutions of WVOP by Ew, and the set of all weakly minimal points of WVOP by Hw.
Then f (Ew) = Hw.

Theorem 3.1 Suppose that f (Ew) �= ∅. If there exists x ∈ Ew such that f (x) ≥C(intP) 0,
then the WVCP is solvable.

Proof Let x ∈ Ew and f (x) ≥C(intP) 0. Then x ∈ C and

(Tx, x) = f (x) ≥C(intP) 0, (Tx, y) ≤C(intP) 0, ∀y ∈ C.

It follows that x is a solution of WVCP. This completes the proof. ��
We now consider the following problems.
The WVOPl: for a given l ∈L(X, Y), finding x ∈ Fw such that l(x) ∈ MinC(intP)l(Fw);
The weak minimal element problem (WMEP): finding x ∈ Fw such that x ∈

MinCCFw.
The weak vector unilateral optimization problem (WVUOP): finding x ∈ C such

that f (x) ∈ MinC(intP)f (C).

Theorem 3.2 Let T = Df be the Frechet derivative of an operator f : X → Y. Then x
solves (WVUOP) implies that x solves (WVVI).

Proof Let x be a solution of WVUOP. Then x ∈ C and f (x) ∈ MinC(intP)f (C), i.e.,
f (y) ≤CP f (x) for all y ∈ C. Since, C is a convex cone,

f (x) ≥C(intP) f (x + t(w − x)), 0 < t < 1, w ∈ C.

It follows that
1
t
[f (x + t(w − x)) − f (x)] ≤C(intP) 0.

Since, f is Frechet differentiable on X and C(intP) is closed, letting t → 0+, we get

(Df (x), w − x) ≤C(intP) 0, ∀w ∈ C,

which is WVVI. This completes the proof. ��
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Theorem 3.3 Let l be a linear operator. If l is positive with respect to CC and C(intP),
then x solves (WMEP) implies x solves (WVOP)l.

Proof Let x be a solution of (WMEP). Then x ∈ Fw and y ≤CC x for all y ∈ Fw, where

Fw = {x ∈ X : x ∈ C, (Tx, y) ≤C(intP) 0, ∀y ∈ C}.
For any z ∈ Fw, we know that z ≤CC x. Since l is positive with respect to CC and
C(intP), it follows that l(z) ≤C(intP) l(x) for all z ∈ Fw. So x solves (WVOP)l. This
completes the proof.

Next we assume that P is a union of some convex cones.

Theorem 3.4 Let T : X → L(X, Y) and P = ⋃
i∈I Pi, where Pi is a closed, pointed,

and convex cone in Y for i ∈ I. Then

SP
WVCP ⊂

⋂
i∈I

SPi
WVCP and SP

WVVI ⊂
⋂
i∈I

SPi
WVVI,

where SPi
WVCP (i ∈ I) is the solution set of the following vector complementarity problem:

find x ∈ C such that

(Tx, x) ≥C(intPi) 0, (Tx, y) ≤C(intPi) 0, ∀y ∈ C

and SPi
WVVI is the solution set of the following problem: find x ∈ C such that

(Tx, y − x) ≤C(intPi) 0, ∀y ∈ C.

Proof Let x ∈ SP
WVCP. Then x ∈ C and

(Tx, x) ≥C(intP) 0, (Tx, y) ≤C(intP) 0, ∀y ∈ C.

Since ∪i∈I intPi ⊂ intP,

(Tx, x) ∈ C(intPi), (Tx, y) ∈ −C(intPi), ∀y ∈ C, i ∈ I.

It follows that x ∈ SPi
WVCP for all i ∈ I. Similarly, we can prove that SP

WVVI ⊂⋂
i∈I SPi

WVVI. This completes the proof. ��
Theorem 3.5 Suppose that P = ⋃

i∈I Pi, where Pi is a closed, pointed, and convex cone
in Y for i ∈ I. Then, for any subset A ⊂ Y,

MinCPA ⊂
⋂
i∈I

MinC(intPi)A.

Proof Let x ∈ MinC(intP)A. Then y ≤C(intP) x for all y ∈ A and so x − y ∈ C(intP) for
all y ∈ A. Since ∪i∈I intPi ⊂ intP, it follows that

x − y ∈ C(intPi), ∀y ∈ A, i ∈ I.

Thus,

y ≤C(intPi) x, ∀y ∈ A, i ∈ I

and so x ∈ ∩i∈IMinC(intPi)A. This completes that proof. ��
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4 Conclusions

The main result obtained in the paper is that, for a number of vector optimization
problems where the ordering relation is defined by the union of a number of convex
cones, the solution set of the problem concerned is shown to be the intersection of
the solution sets of all vector optimization subproblems which are defined by each
convex cone. This result looks interesting and may be useful in the design of opti-
mal algorithms to find the whole solution set of vector optimization problems with a
nonconvex ordering cone.
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